Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

C(b(x1)) → A(x1)
C(b(x1)) → A(c(c(a(x1))))
C(b(x1)) → C(a(x1))
C(b(x1)) → C(c(a(x1)))

The TRS R consists of the following rules:

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(x1)) → A(x1)
C(b(x1)) → A(c(c(a(x1))))
C(b(x1)) → C(a(x1))
C(b(x1)) → C(c(a(x1)))

The TRS R consists of the following rules:

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(x1)) → C(a(x1))
C(b(x1)) → C(c(a(x1)))

The TRS R consists of the following rules:

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(x1)) → C(a(x1)) at position [0] we obtained the following new rules:

C(b(c(x0))) → C(b(b(x0)))
C(b(b(x0))) → C(x0)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
QDP
              ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(c(x0))) → C(b(b(x0)))
C(b(b(x0))) → C(x0)
C(b(x1)) → C(c(a(x1)))

The TRS R consists of the following rules:

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(x1)) → C(c(a(x1))) at position [0] we obtained the following new rules:

C(b(c(x0))) → C(c(b(b(x0))))
C(b(b(x0))) → C(c(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
QDP
                  ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(c(x0))) → C(c(b(b(x0))))
C(b(c(x0))) → C(b(b(x0)))
C(b(b(x0))) → C(x0)
C(b(b(x0))) → C(c(x0))

The TRS R consists of the following rules:

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
QTRS
                      ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))
C(b(c(x0))) → C(c(b(b(x0))))
C(b(c(x0))) → C(b(b(x0)))
C(b(b(x0))) → C(x0)
C(b(b(x0))) → C(c(x0))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))
C(b(c(x0))) → C(c(b(b(x0))))
C(b(c(x0))) → C(b(b(x0)))
C(b(b(x0))) → C(x0)
C(b(b(x0))) → C(c(x0))

The set Q is empty.
We have obtained the following QTRS:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
QTRS
                          ↳ DependencyPairsProof
                          ↳ QTRS Reverse
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

C1(b(C(x))) → B(c(C(x)))
B(c(x)) → C1(c(a(x)))
C1(a(x)) → B(x)
C1(b(C(x))) → C1(C(x))
B(b(C(x))) → C1(C(x))
C1(b(C(x))) → B(b(c(C(x))))
B(c(x)) → C1(a(x))
C1(a(x)) → B(b(x))
C1(b(C(x))) → B(b(C(x)))

The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ DependencyPairsProof
QDP
                              ↳ DependencyGraphProof
                          ↳ QTRS Reverse
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C1(b(C(x))) → B(c(C(x)))
B(c(x)) → C1(c(a(x)))
C1(a(x)) → B(x)
C1(b(C(x))) → C1(C(x))
B(b(C(x))) → C1(C(x))
C1(b(C(x))) → B(b(c(C(x))))
B(c(x)) → C1(a(x))
C1(a(x)) → B(b(x))
C1(b(C(x))) → B(b(C(x)))

The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
QDP
                                  ↳ Narrowing
                          ↳ QTRS Reverse
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C1(b(C(x))) → B(c(C(x)))
C1(a(x)) → B(x)
B(c(x)) → C1(c(a(x)))
C1(b(C(x))) → B(b(c(C(x))))
B(c(x)) → C1(a(x))
C1(a(x)) → B(b(x))

The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C1(b(C(x))) → B(b(c(C(x)))) at position [0] we obtained the following new rules:

C1(b(C(y0))) → B(a(c(c(a(C(y0))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
QDP
                                      ↳ DependencyGraphProof
                          ↳ QTRS Reverse
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C1(b(C(x))) → B(c(C(x)))
B(c(x)) → C1(c(a(x)))
C1(a(x)) → B(x)
C1(b(C(y0))) → B(a(c(c(a(C(y0))))))
B(c(x)) → C1(a(x))
C1(a(x)) → B(b(x))

The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
QDP
                                          ↳ Narrowing
                          ↳ QTRS Reverse
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C1(b(C(x))) → B(c(C(x)))
C1(a(x)) → B(x)
B(c(x)) → C1(c(a(x)))
B(c(x)) → C1(a(x))
C1(a(x)) → B(b(x))

The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C1(a(x)) → B(b(x)) at position [0] we obtained the following new rules:

C1(a(b(C(x0)))) → B(c(C(x0)))
C1(a(b(C(x0)))) → B(C(x0))
C1(a(a(x0))) → B(x0)
C1(a(c(x0))) → B(a(c(c(a(x0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ Narrowing
QDP
                                              ↳ DependencyGraphProof
                          ↳ QTRS Reverse
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C1(a(b(C(x0)))) → B(c(C(x0)))
C1(b(C(x))) → B(c(C(x)))
B(c(x)) → C1(c(a(x)))
C1(a(x)) → B(x)
C1(a(a(x0))) → B(x0)
C1(a(c(x0))) → B(a(c(c(a(x0)))))
B(c(x)) → C1(a(x))
C1(a(b(C(x0)))) → B(C(x0))

The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
QDP
                                                  ↳ Narrowing
                          ↳ QTRS Reverse
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C1(a(b(C(x0)))) → B(c(C(x0)))
C1(b(C(x))) → B(c(C(x)))
B(c(x)) → C1(c(a(x)))
C1(a(x)) → B(x)
C1(a(a(x0))) → B(x0)
B(c(x)) → C1(a(x))

The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(c(x)) → C1(c(a(x))) at position [0] we obtained the following new rules:

B(c(x0)) → C1(b(b(x0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ DependencyPairsProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
QDP
                          ↳ QTRS Reverse
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C1(b(C(x))) → B(c(C(x)))
C1(a(b(C(x0)))) → B(c(C(x0)))
C1(a(x)) → B(x)
B(c(x0)) → C1(b(b(x0)))
C1(a(a(x0))) → B(x0)
B(c(x)) → C1(a(x))

The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

The set Q is empty.
We have obtained the following QTRS:

a(b(x)) → x
a(c(x)) → b(b(x))
c(b(x)) → a(c(c(a(x))))
C(b(c(x))) → C(c(b(b(x))))
C(b(c(x))) → C(b(b(x)))
C(b(b(x))) → C(x)
C(b(b(x))) → C(c(x))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ DependencyPairsProof
                          ↳ QTRS Reverse
QTRS
                          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x)) → x
a(c(x)) → b(b(x))
c(b(x)) → a(c(c(a(x))))
C(b(c(x))) → C(c(b(b(x))))
C(b(c(x))) → C(b(b(x)))
C(b(b(x))) → C(x)
C(b(b(x))) → C(c(x))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))
c(b(C(x))) → b(b(c(C(x))))
c(b(C(x))) → b(b(C(x)))
b(b(C(x))) → C(x)
b(b(C(x))) → c(C(x))

The set Q is empty.
We have obtained the following QTRS:

a(b(x)) → x
a(c(x)) → b(b(x))
c(b(x)) → a(c(c(a(x))))
C(b(c(x))) → C(c(b(b(x))))
C(b(c(x))) → C(b(b(x)))
C(b(b(x))) → C(x)
C(b(b(x))) → C(c(x))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ Narrowing
            ↳ QDP
              ↳ Narrowing
                ↳ QDP
                  ↳ QDPToSRSProof
                    ↳ QTRS
                      ↳ QTRS Reverse
                        ↳ QTRS
                          ↳ DependencyPairsProof
                          ↳ QTRS Reverse
                          ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x)) → x
a(c(x)) → b(b(x))
c(b(x)) → a(c(c(a(x))))
C(b(c(x))) → C(c(b(b(x))))
C(b(c(x))) → C(b(b(x)))
C(b(b(x))) → C(x)
C(b(b(x))) → C(c(x))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))

The set Q is empty.
We have obtained the following QTRS:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(b(x1)) → x1
a(c(x1)) → b(b(x1))
c(b(x1)) → a(c(c(a(x1))))

The set Q is empty.
We have obtained the following QTRS:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(x)) → x
c(a(x)) → b(b(x))
b(c(x)) → a(c(c(a(x))))

Q is empty.